Как создать raid из томов. Какие существуют RAID-массивы? Создание RAID-массива на базе контроллера, интегрированного в ICH10R

Настройка программного RAID массива в среде Windows гораздо более простая задача, чем под Linux системами, однако и она имеет свои особенности. Зачастую неполные и отрывочные знания в данной области приводят к сложностям, а в среде администраторов ходят мифы и легенды о "капризности" и "глючности" данного механизма в Windows. В данной статье мы постараемся заполнить этот пробел.
Перед тем как продолжить, снова вспомним основной принцип построения аппаратных массиво: один элемент массива - один физический диск. Основа программных массивов - логический диск. Понимание этой разницы - залог успеха, то что применимо к аппаратному массиву, может оказаться катастрофическим для программного, особенно если речь идет об отказе одного из элементов массива.

Для создания программного RAID в среде Windows нам понадобится познакомиться с понятием динамического диска , так как программные массивы могут быть созданы только на них. Репутация динамических дисков неоднозначна, многие администраторы шарахаются от них, как черт от ладана. А зря, запомнив несколько простых правил работа с динамическими дисками становится столь же проста как с обычными.

Главное правило: установка или загрузка Windows с динамического тома возможна только в том случае, если этот диск был преобразован из системного или загрузочного тома. Т.е. если у вас стоит несколько экземпляров ОС, то после преобразования диска в динамический вы сможете загрузить лишь тот экземпляр, который находится на загрузочном разделе.

Исходя из этого правила становится очевидно, что для загрузочного и системного томов возможно создание только зеркального массива (RAID1), создание иных видов массива невозможно, так как они подразумевают установку системы на заранее созданный раздел.

А стоит ли овчинка выделки? Несмотря на все ограничения, стоит. Основной недостаток аппаратных массивов - привязка к конкретной модели контроллера. Если у вас сгорела материнская плата или контроллер, вам понадобится точно такой же (или материнская плата с аналогичным контроллером), иначе с данными можно попрощаться. В случае программного RAID достаточно машины с установленным Windows Server.

На практике работа с программными массивами и динамическими дисками производится через оснастку Хранение - Управление дисками в Диспетчере сервера . Для преобразования дисков в динамические достаточно щелкнуть на одном из них правой кнопкой мыши и выбрать Преобразовать в динамический диск , в открывшемся окне можно выбрать для преобразования сразу несколько дисков.

Стоит помнить, что эта операция необратимая и особое внимание следует уделить системному разделу, переразметить загрузочный диск у вас уже не получится (точнее он после этого перестанет быть загрузочным), единственное, что вы сможете - это расширить том за счет неразмеченного пространства.

Следующим шагом станет создание массива, щелкаем правой кнопкой мыши на нужном томе и выбираем желаемый вариант, в случае с системным и загрузочными томами вариант будет один - зеркало, потом вам будет предложено выбрать диск для размещения зеркального тома. По завершению создания массива тут же начнется его ресинхронизация.

Подключив дополнительные диски мы получим гораздо более широкие возможности, вы можете как объединить несколько дисков в отдельный том, так и создать RAID 0, 1 или 5.

В общем ничего сложного, однако множество ограничений способны отпугнуть кого угодно. Но не спешите делать скоропалительных выводов, по здравому размышлению никаких серьезных препятствий нет, так как обычно принято разносить систему и данные по разным дискам, учитывая копеечную стоимость современных дисков, это не влечет существенных затрат. Мы, например, для нашего тестового сервера создали зеркало для системного диска и RAID5 для данных.

Причем все это удовольствие можно реализовать на самой обычной бюджетной материнской плате, учитывая, что производительность программного массива ничем не отличается от дешевых аппаратных, данная технология выглядит очень привлекательно. О методах обеспечения отказоустойчивости и действиях при отказе дисков мы поговорим в нашей следующей статье.

RAID-массив. Что это? Зачем? И как создать?

За долгие десятилетия развития компьютерной индустрии средства хранения информации для ЭВМ прошли серьезный эволюционный путь развития. Перфоленты и перфокарты, магнитные ленты и барабаны, магнитные, оптические и магнито-оптические диски, полупроводниковые накопители - это лишь короткий перечень уже опробованных технологий. Сейчас в лабораториях мира предпринимаются попытки создания голографических и квантовых накопителей, которые позволят многократно повысить плотность записи и надежность ее хранения.

Пока же наиболее распространенным средством хранения информации в персональном компьютере уже продолжительное время остаются жесткие диски. Иначе их могут называть НЖМД (накопители на жестких магнитных дисках), винчестерами, хард-дисками, но суть от изменения названия не меняется - это накопители с пакетом магнитных дисков в едином корпусе.

Первый жесткий диск, называвшийся IBM 350, был собран 10 января 1955 года в лаборатории американской компании IBM. При размере с хороший шкаф и весе в тонну этот винчестер вмещал пять мегабайт информации. С современной точки зрения подобный объем даже смешным назвать нельзя, однако во время массового использования перфокарт и магнитных лент с последовательным доступом это был колоссальный технологический прорыв.


Выгрузка первого жесткого диска IBM 350 с самолета

С того дня прошло меньше шести десятков лет, но сейчас никого не удивишь жестким диском весом меньше двухсот грамм, длиной десять сантиметров и объемом информации в пару терабайт. При этом принципиально технология записи, хранения и считывания данных ничем не отличается от применяемой в IBM 350 - те же магнитные пластины и скользящие над ними головки чтения/записи.


Эволюция винчестеров на фоне дюймовой линейки (фото из " Википедии " )

К сожалению, именно особенности этой технологии служат причиной возникновения двух основных проблем, которые связаны с использованием жестких дисков. Первой из них является слишком низкая скорость записи, чтения и передачи информации от диска к процессору. В современном компьютере именно винчестер является медленным устройством, зачастую определяющим производительность всей системы в целом.

Вторая проблема - недостаточная защищенность хранимой на жестком диске информации. При поломке винчестера вы можете безвозвратно утратить все данные, которые на нем хранились. И хорошо, если потери ограничатся утратой семейного фотоальбома (хотя и в этом хорошего на самом деле мало). Уничтожение же важной финансовой и маркетинговой информации может оказаться причиной краха бизнеса.

Отчасти помогает защитить хранимую информацию регулярное резервное копирование (бэкапирование) всех или только важных данных на винчестере. Но и в этом случае при его поломке будет потеряна та часть данных, которая была обновлена с момента последнего бэкапа.

К счастью, существуют методы, которые помогают устранить указанные выше недостатки традиционных жестких дисков. Одним из таких методов является создание RAID - массивов из нескольких винчестеров.

Что такое RAID

В Интернете и даже современной компьютерной литературе нередко можно встретить термин "RAID-массив", что фактически является тавтологией, так как аббревиатура RAID (redundant array of independent disks) уже расшифровывается как "избыточный массив независимых дисков".

В названии полностью раскрывается физический смысл таких массивов - это набор из двух и более жестких дисков. Совместная работа этих дисков управляется специальным контроллером. В результате работы контроллера такие массивы воспринимаются операционной системой как один жесткий диск и пользователь может не задумываться над нюансами управления работой каждого винчестера в отдельности.

Существует несколько основных типов RAID, каждый из которых по-разному влияет на суммарную надежность и скорость работы массива в сравнении с одиночными дисками. Обозначаются они условным номером от 0 до 6. Подобное обозначение с подробным описанием архитектуры и принципа работы массивов было предложено специалистами Калифорнийского университета в Беркли. Помимо основных семи типов RAID возможны и различные их сочетания. Рассмотрим их далее.

Это простейший тип массива жестких дисков, основным назначением которого является повышение производительности дисковой подсистемы компьютера. Достигается это путем разделения потоков записываемой (считываемой) информации на несколько подпотоков, которые одновременно пишутся (считываются) на несколько винчестеров. В результате суммарная скорость обмена информацией, например, для двухдисковых массивов возрастает на 30-50% по сравнению с одним жестким диском того же типа.

Общий объем RAID 0 равен сумме объемов включенных в него винчестеров. Разбиение информации выполняется на блоки данных фиксированной длины, независимо от длины записываемых файлов.

Основным достоинством RAID 0 является существенный прирост скорости обмена информацией между дисковой системой без потери полезного объема жестких дисков. Недостаток - снижение общей надежности системы хранения. При выходе из строя любого из дисков RAID 0 безвозвратно пропадает вся записанная в массиве информация.

Подобно рассмотренному выше, этот тип массивов также является самым простым в организации. Строится он на основе двух винчестеров, каждый из которых является точным (зеркальным) отражением другого. Информация параллельно записывается на оба диска в массиве. Чтение данных происходит одновременно с обоих дисков последовательными блоками (распараллеливание запросов), за счет чего достигается некоторое повышение скорости чтения по сравнению с одним жестким диском.

Общий объем RAID 1 равен объему меньшего из входящих в массив жестких дисков.

Достоинства RAID 1: высокая надежность хранения информации (данные невредимы, пока цел хотя бы один из входящих в массив дисков) и некоторый прирост скорости чтения. Недостаток - покупая два жестких диска, вы получаете полезный объем только одного. Несмотря на потерю половины полезного объема, "зеркальные" массивы достаточно популярны из-за высокой надежности и относительно малой стоимости - пара дисков все же дешевле, чем четыре или восемь.

При построении этих массивов используется алгоритм восстановления информации с помощью кодов Хэмминга (американский инженер, разработавший этот алгоритм в 1950 году для коррекции ошибок при работе электромеханических вычислителей). Для обеспечения работы этого RAID контроллером создаются две группы дисков - одна для хранения данных, вторая группа для хранения кодов коррекции ошибок.

Подобный тип RAID получил малое распространение в домашних системах из-за чрезмерной избыточности количества жестких дисков - так, в массиве из семи жестких дисков под данные будут отведены только четыре. При росте количества дисков избыточность снижается, что отражено в приведенной таблице.

Основным достоинством RAID 2 является возможность коррекции возникающих ошибок "на лету" без снижения скорости обмена данными между дисковым массивом и центральным процессором.

RAID 3 и RAID 4

Эти два типа дисковых массивов очень похожи по схеме построения. В обоих для хранения информации используется несколько жестких дисков, один из которых используется исключительно для размещения контрольных сумм. Для создания RAID 3 и RAID 4 достаточно трех винчестеров. В отличие от RAID 2 восстановление данных "на лету" невозможно - информация восстанавливается после замены вышедшего из строя жесткого диска в течение некоторого времени.

Разница между RAID 3 и RAID 4 заключается в уровне разбиения данных. В RAID 3 информация разбивается на отдельные байты, что приводит к серьезному замедлению при записи/считывании большого количества мелких файлов. В RAID 4 происходит разбиение данных на отдельные блоки, размер которых не превышает размер одного сектора на диске. В результате повышается скорость обработки небольших файлов, что критично для персональных компьютеров. По этой причине RAID 4 получил большее распространение.

Существенным недостатком рассматриваемых массивов является повышенная нагрузка на жесткий диск, предназначенный для хранения контрольных сумм, что существенно снижает его ресурс.

Дисковые массивы этого типа фактически являются развитием схемы RAID 3/RAID 4. Отличительной особенностью является то, что для хранения контрольных сумм не используется отдельный диск - они равномерно распределяются по всем жестким дискам массива. Результатом распределения стала возможность параллельной записи на несколько дисков сразу, что несколько повышает скорость обмена данными по сравнению с RAID 3 или RAID 4. Однако это повышение не столь существенно, так как тратятся дополнительные ресурсы системы на вычисление контрольных сумм операцией "исключающее или". В то же время скорость чтения возрастает значительно, так как возможно простое распараллеливание процесса.

Минимальное число жестких дисков для построения RAID 5 - три.

Массивы, построенные по схеме RAID 5, имеют весьма существенный недостаток. При выходе из строя любого диска после его замены необходимо несколько часов на полное восстановление информации. В это время неповрежденные жесткие диски массива работают в сверхинтенсивном режиме, что существенно повышает вероятность выхода из строя второго диска и полной потери информации. Хоть и редко, но подобное происходит. Кроме того, во время восстановления целостности RAID 5 массив почти полностью занят этим процессом и текущие операции записи/чтения выполняются с большими задержками. Если для большинства обычных пользователей это не критично, то в корпоративном секторе такие задержки могут привести к определенным финансовым потерям.

В значительной степени указанную выше проблему решает построение массивов по схеме RAID 6. В этих структурах под хранение контрольных сумм, которые также циклично и равномерно разносятся на разные диски, выделяется объем памяти, равный объему двух жестких дисков. Вместо одной вычисляются две контрольные суммы, что гарантирует целостность данных при одновременном выходе из строя сразу двух винчестеров в массиве.

Достоинства RAID 6 - высокая степень защищенности информации и меньшее, чем в RAID 5, падение производительности в процессе восстановления данных при замене поврежденного диска.

Недостаток RAID 6 - снижение общей скорости обмена данными примерно на 10% из-за увеличения объема необходимых вычислений контрольных сумм, а также из-за роста объема записываемой/считываемой информации.

Комбинированные типы RAID

Помимо рассмотренных выше основных типов широко применяются различные их комбинации, которые компенсируют те или иные недостатки простых RAID. В частности, широко распространено использование схем RAID 10 и RAID 0+1. В первом случае пару зеркальных массивов объединяют в RAID 0, во втором наоборот - два RAID 0, объединяют в зеркало. И в том и в другом случае к защищенности информации RAID 1 добавляется повышенная производительность RAID 0.

Нередко с целью повышения уровня защиты важной информации используются схемы построения RAID 51 или RAID 61 - зеркалирование и так высокозащищенных массивов обеспечивает исключительную сохранность данных при любых сбоях. Однако в домашних условиях такие массивы реализовывать нецелесообразно из-за чрезмерной избыточности.

Построение массива дисков - от теории к практике

Построением и управлением работой любого RAID занимается специализированный RAID-контроллер. К большому облегчению рядового пользователя персонального компьютера, в большинстве современных материнских плат эти контроллеры уже реализуются на уровне южного моста чипсета. Так что для построения массива жестких дисков достаточно озаботиться приобретением необходимого их количества и определения желаемого типа RAID в соответствующем разделе настройки BIOS. После этого в системе вместо нескольких жестких дисков вы увидите только один, который уже по желанию можно разбивать на разделы и логические диски. Учтите, что тем, кто еще пользуется ОС Windows XP, понадобится установить дополнительный драйвер.

Внешний RAID-контроллер c четырьмя портами SATA

Отметим, что интегрированные контроллеры, как правило, способны создать RAID 0, RAID 1 и их сочетания. Для создания более сложных массивов все же потребуется приобретение отдельного контроллера.

И напоследок еще один совет - для создания RAID приобретайте жесткие диски одинакового объема, одного производителя, одной модели и желательно из одной партии. Тогда они будут оснащены одинаковыми наборами логики и работа массива этих жестких дисков будет наиболее стабильной.

Здравствуйте. Сегодня мне попали в руки два новеньких жестких диска , долго думал что с ними можно сделать, чтобы оказать помощь моим читателям. Подумав, я всё-таки решил, что лучше рассказа о RAID 1, созданного самой операционной системой, я вряд ли смогу что-нибудь написать. Итак, что такое RAID 1?

RAID 1 — это массив из двух дисковых носителей, информация на которых дублируется на обоих дисках. То есть вы имеете два диска, которые являются полными копиями друг друга. Для чего это делается? В первую очередь, для увлечения надежности хранения информации. Так как вероятность выхода из строя обоих дисков одновременно мала, в случае выхода из строя одного диска, у вас всегда останется копия всей информации на втором. На RAID 1 массиве можно хранить любую информацию как и на обычном жестком диске, что позволяет не волноваться о важном проекте, над которым вы работали очень долгое время.

Сегодня же мы рассмотрим, как создается RAID массив средствами самой Windows при использовании двух пустых дисков (уверенно заявляю, что данная инструкция работает на Windows 7, 8 и 8.1). Если вас интересует создание RAID массива с использованием уже заполненного диска, то вам необходима на эту тему.

И, собственно, инструкция к вашему ознакомлению:

1) Для начала установите жесткие диски в системный блок и запустите компьютер.

2) Открываем «Панель управления → Система и безопасность → Администрирование → Управление компьютером → Запоминающие устройства → Управления дисками». При первом включении утилита сообщит об установке новых дисковых устройств и предложит выбрать разметку для них. Если у вас диск 2,2Тб и более выбирайте GPT, если меньше — то MBR.

3) В нижней части окна находим один из наших новых жестких дисков и нажимаем по нему правой клавишей. Выбираем «Создать зеркальный том»:

4) Откроется мастер создания образа. Жмём далее.

5) На этой странице вам нужно добавить диск, который будет дублировать выбранный до этого диск. Поэтому выбираем в левой части диск и жмём кнопку «Добавить»:



Жмём далее.

6) Выбираем букву, которой будет обозначен новый том. Я выбрал M (от англ. Mirror). Нажимаем далее.

7) Задаем файловую систему, размер кластера и имя тома. Также рекомендую установить галочку напротив «Быстрое форматирование», пусть делает всё сразу. И снова далее.

8) Проверяем что у нас получилось, если всё правильно жмём «Готово».

Объемы информации растут быстрыми темпами. Так, согласно данным аналитической организации IDC, в 2006 году на Земле было сгенерировано около 161 млрд. Гб информации, или 161 экзабайт. Если представить этот объем информации в виде книг, то получится 12 обычных книжных полок, только длина их будет равна расстоянию от Земли до Солнца. Многие пользователи задумываются о приобретении все более емких накопителей, благо цены на них снижаются, и за 100 долларов сейчас можно приобрести современный винчестер на 320 Гб. Большинство современных материнских плат имеют на борту интегрированный RAID-контроллер с возможностью организовывать массивы уровней 0 и 1. Так что всегда можно приобрести пару SATA-дисков и объединить их в RAID-массив. В данном материале как раз рассматривается процесс создания RAID-массивов уровней 0 и 1, сравнение их производительности. В качестве тестируемых взяты два современных жестких диска Seagate Barracuda ES (Enterprise Storage) максимальной емкости – 750 Гб. Несколько слов о самой технологии. Избыточный массив независимых (или недорогих) дисковых накопителей (Redundant Array of Independent/Inexpensive Disks – RAID) разрабатывался в целях повышения отказоустойчивости и эффективности систем компьютерных запоминающих устройств. Технология RAID была разработана в Калифорнийском университете в 1987 году. В ее основу был положен принцип использования нескольких дисков небольшого объема, взаимодействующих друг с другом посредством специального программного и аппаратного обеспечения, в качестве одного диска большой емкости. Первоначальная конструкция RAID-массивов предусматривала простое соединение областей памяти нескольких отдельных дисков. Однако в последствии оказалось, что подобная схема снижает надежность матрицы и практически не влияет на быстродействие. Например, четыре диска, объединенных в матрицу, будут сбоить в четыре раза чаще, чем один подобный накопитель. Для решения этой проблемы инженеры из института Беркли предложили шесть различных уровней RAID. Каждый из них характеризуется определенной отказоустойчивостью, емкостью винчестера и производительностью. В июле 1992 года была создана организация RAID Advisory Board (RAB), которая занимается стандартизацией, классифицированием и изучением RAID. В настоящее время RAB определила семь стандартных уровней RAID. Избыточный массив независимых дисковых накопителей обычно реализуется с помощью платы контроллера RAID. В нашем случае жесткие диски подключались к интегрированному RAID-контроллеру материнской платы abit AN8-Ultra на базе чипсета nForce 4 Ultra. Для начала рассмотрим возможности, предлагаемые чипсетом для построения RAID-массивов. nForce 4 Ultra позволяет создавать RAID-массивы уровней 0, 1, 0+1, JBOD.

RAID 0 (Stripe)

Расслоение дисков, также известное как режим RAID 0, уменьшает число обращений к дискам при чтении и записи для многих приложений. Данные делятся между несколькими дисками в массиве так, чтобы операции чтения и записи проводились одновременно для нескольких дисков. Этот уровень обеспечивает высокую скорость выполнения операций чтения/записи (теоретически - удвоение), но низкую надежность. Для домашнего пользователя – наверное, самый интересный вариант, позволяющий добиться существенного роста скорости чтения и записи данных с накопителей.

RAID 1 (Mirror)

Зеркалирование дисков, известное как RAID 1, предназначено для тех, кто хочет легко резервировать наиболее важные данные. Каждая операция записи производится дважды, параллельно. Зеркальная, или дублированная, копия данных может храниться на том же диске или на втором резервном диске в массиве. RAID 1 обеспечивает резервную копию данных, если текущий том или диск поврежден или стал недоступен из-за сбоя в аппаратном обеспечении. Зеркалирование дисков может применяться для систем с высоким коэффициентом готовности или для автоматического резервирования данных вместо утомительной ручной процедуры дублирования информации на более дорогие и менее надежные носители.

Системы RAID 0 могут дублироваться с помощью RAID 1. Расслоение и зеркалирование дисков (RAID 0+1) обеспечивает более высокую производительность и защиту. Оптимальный способ по соотношению надежность/быстродействие, однако, требует большого количества накопителей.

JBOD

JBOD – данная аббревиатура расшифровывается как "Just a Bunch of Disks", то есть просто группа дисков. Данная технология позволяет объединять в массив диски различной емкости, правда, прироста скорости в этом случае не происходит, скорее, даже наоборот. У рассматриваемого нами интегрированного RAID-контроллера NVIDIA RAID есть и другие интересные возможности: Определение неисправного диска. Многие пользователи многодисковых систем покупают несколько одинаковых жестких дисков, чтобы полностью воспользоваться преимуществом дискового массива. Если массив дает сбой, определить неисправный диск можно только по серийному номеру, что ограничивает возможность пользователя правильно определить поврежденный диск.

Дисковая система предупреждения NVIDIA упрощает идентификацию, отображая на экране материнскую плату с указанием неработающего порта, чтобы вы точно знали, какой диск нужно заменить. Установка резервного диска. Технологии зеркалирования дисков позволяют пользователям назначать резервные диски, которые могут быть сконфигурированы в качестве горячего резерва, защищая дисковый массив в случае сбоя. Общий резервный диск может защитить несколько массивов дисков, а специальный резервный диск может служить в качестве горячего резерва для определенного дискового массива. Поддержка резервного диска, который обеспечивает дополнительную защиту поверх зеркалирования, традиционно ограничивалась высокоуровневыми многодисковыми системами. Технология хранения NVIDIA переносит эту возможность на ПК. Специальный резервный диск может заменить неисправный, пока не закончится ремонт, что позволяет команде поддержки выбирать любое удобное время для ремонта. Морфинг . В традиционном многодисковом окружении пользователи, которые хотят изменить состояние диска или многодискового массива должны зарезервировать данные, удалить массив, перегрузить ПК и затем сконфигурировать новый массив. Во время этого процесса пользователь должен пройти немало шагов только чтобы сконфигурировать новый массив. Технология хранения NVIDIA позволяет изменить текущее состояние диска или массива с помощью одного действия, которое называется морфинг. Морфинг позволяет пользователям обновить диск или массив для увеличения производительности, надежности и вместимости. Но более важно то, что вам не нужно выполнять многочисленные действия. Кросс-контроллер RAID. В отличие от конкурентных многодисковых (RAID) технологий, решение NVIDIA поддерживает как Serial ATA (SATA), так и параллельные ATA накопители в рамках одного RAID массива. Пользователям необязательно знать семантику каждого жесткого диска, так как различия в их настройках очевидны. Технология хранения NVIDIA полностью поддерживает использование многодискового массива для загрузки операционной системы при включении компьютера. Это означает, что все доступные жесткие диски могут быть включены в массив для достижения максимальной производительности и защиты всех данных. Восстановление данных "на лету". При сбое диска зеркалирование дисков позволяет продолжить работу без остановок благодаря дублированной копии данных, хранящейся в массиве. Технология хранения NVIDIA идет на шаг дальше и позволяет пользователю создать новую зеркальную копию данных во время работы системы, не прерывая доступ пользователя и приложений к данным. Восстановление данных «на лету» устраняет простой системы и увеличивает защиту критической информации. Горячее подключение. Технология хранения NVIDIA поддерживает горячее подключение для SATA дисков. В случае сбоя диска пользователь может отключить неисправный диск без выключения системы и заменить его новым. Пользовательский интерфейс NVIDIA. Благодаря интуитивно понятному интерфейсу любой пользователь, даже не имеющий опыта работы с RAID, может легко использовать и управлять технологией хранения NVIDIA (также известной как NVIDIA RAID). Несложный «мышиный» интерфейс позволит быстро определить диски для конфигурирования в массиве, активизировать расслоение и создать зеркальные томы. Конфигурация может быть легко изменена в любое время с помощью того же интерфейса.

В конце прошлой недели купил комплектующие для компьютера и столкнулся с рядом проблем при настройке оборудования. Новый компьютер предназначен для хранения баз данных в офисе одной фирмы, следовательно нужен был RAID массив. Бюджет был порядка 20000 рублей, поэтому собирал на платформе AMD. Материнская плата ASUS M4A88TD-M и два одинаковых жестких диска WD 500 Gb. Для настройки RAID массива HDD подключил в разъемы SATA0 и SATA1. Создавал массив RAID 1, объединение жестких дисков с повышенной надежностью и отказоустойчивостью. Когда жесткие диски зеркалят друг друга. Рекомендации описанные ниже подходят для настройки RAID0, повышения скорости работы дисков.

Первое, зашел в BIOS. Для моей материнской платы нажатие кнопки DEL при загрузке, для плат других фирм может быть F2. В настройках конфигурации SATA переключил режим IDE на RAID. Нажал F10 для сохранения настроек и перезагрузил компьютер.

Второе, нужно включитьRAID массив. Это первый момент, на котором попал в ступор. В инструкции к материнской плате ASUS об этом ни слова не сказано. Во время загрузки компьютера нажал Ctrl+F. Открыл меню Option ROM Utility. Здесь выбрал второй пункт нажатием 2.

В этом меню нажал Ctrl+C для создания RAID. Идя по пунктам включал функции RAID Mode в положение RAID1, напротив дисков Y. Затем дважды нажал Ctrl+Y, ввел имя RAID массиву и сохранил выставленные параметры. Вышел и перезагрузил компьютер.

Теперь при загрузке компьютера видно, что в системе подключен RAID1 массив.

Третье, определил приоритет очереди загрузки с разных устройств. Для этого пришлось еще раз войти в BIOS. Привод DVD, за ним мой RAID, а последним подключаемый устройства, т.е. флешки.

На RAID массив устанавливал Windows 7. В принципе, дальнейшие советы подойдут для установки Windows XP, Vista, Server 2008 и Windows 8 на RAID массив. До начала установки зашел с другого компьютера на сайт ASUS и скачал AMD RAID driver. Драйвер RAID загрузил на флеш-диск, его не надо вставлять в USB разъем до выбора разделов жесткого диска. Образ Windows был на DVD. После этого перешел к установке ОС.

Четвертое, использовал драйвер с флешки, когда дошел до выбора раздела. Вставил флешку, нажал Загрузка и Обзор.

Во всплывшем меню выбрал каталог драйвера, операционный системы и разрядности. В моем случае Windows 7 64bit.

Установщик Windows обнаружил драйвер AMD AHCI Compatible RAID Controller. Его было достаточно, чтобы увидеть раздел жесткого диска. Вынул флеш диск из USB порта.

Здесь меня поджидала вторая загвоздка, когда не ставится Windows 7. Выбрал стандартный способ Создать, весь объем диска установщик определил как Основной. Нажал Далее и получил ошибку. Программе установки не удалось создать новый или найти существующий системный раздел. Дополнительные сведения и так далее. Когда Windosw не устанавливается из-за раздела, решение — сделать самостоятельно разбивку диска на разделы. Удалил все разделы. Нажал Shift+F10.

Пятое, нажав Shift+F10, вызвал командную строку. Shift+Alt возвращает английский язык раскладки клавиатуры на русском дистрибутиве. Ввел diskpart, команда вызова утилиты работы с диском. Следующая команда list disk. Увидел два диска в системе: диск 0 — флешка, диск 1 — RAID массив. Выбрал диск 1 командой select disk 1. Дальше ввел create partition primary size=131072, создал системный раздел размером 128 Гб. За это отвечает команда create partition primary. Команда size для определения размера диска.

Вторую часть диска определил в раздел командой create partition extended. Не использовал size, чтобы включить все оставшееся пространство во второй диск. Что в дальнейшем позволит создать Логический диск.

Выбрал первый раздел командой select partition 1. А командой active раздел помечен как активный. После этого закрыл окно командной строки. Нажал кнопку Обновить.

После обновления списка разделов увидел два диска объемом 128 Гб и 337 Гб. Выбрал первый раздел и нажал кнопку Далее.

Горячо ожидаемая надпись Установка Windows… Установка Windows прошла в обычном режиме.

Проделал несколько раз за три вечера. Некоторые попытки были с ошибками, что увеличивало время. Если останутся вопросы, пишите в комментарии. Например, нужно перезагрузить компьютер после разбития диска на новые разделы, если флешка была вставлена до установки Windows. Все выше описанное было повторено за раз, чтобы убедиться в верности алгоритма из пяти пунктов. Установка Windows 7 на RAID работает, проверено!


Читайте также:

Не ждали? Гандонография или как снимать под водой на телефон Обзор электронной книги Pocketbook Touch Обзор видеоорегистратора AdvoCam FD4 GPS



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!